Numerical Flow Model For an Atlantic Coast Barrier Island Tidal Inlet

CREULATING COPY Sea Grant Depository

By T.C. Gopalakrishnan and J.L. Machemehl

UNC Sea Grant Publication UNC-SG-78-02

NUMERICAL FLOW MODEL FOR AN ATLANTIC COAST BARRIER ISLAND TIDAL INLET

Ву

T.C. GOPALAKRISHNAN AND J.L. MACHEMEHL

This study was partially supported by the Center for Marine and Coastal Studies and the Office of Sea Grant, NOAA, U.S. Department of Commerce, under Grant No. 04-6-158-44054, and the North Carolina Department of Administration. The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright that may appear hereon.

SEA GRANT PUBLICATION UNC-SG-78-02

CENTER FOR MARINE AND COASTAL STUDIES FUBLICATION 78-1

APRIL 1978

ABSTRACT

A numerical model for computation of flow in inlets with junction is developed. The Galerkin technique is coupled with a finite element analysis in the flow model. The vertically integrated equations of momentum and mass conservation (Leendertse (1967)) are used with appropriate boundary and initial conditions. The junction conditions are introduced by the time rates of change of energy and mass flux at the junction. A "double sweep" approach is used in solving for the dynamics of flow. A parabolic shape function is adopted in the model to satisfy the requirement of linear independence.

The numerical flow model is verified with field data obtained from the U.S. Army Corps of Engineers (1976) for Carolina Beach Inlet, North Carolina. The U.S. Army Corps of Engineers collected tide and current data in the inlet gorge and Atlantic Intracoastal Waterway in November 1974. The tidal fluctuations in the inlet gorge and tidal velocities in the Atlantic Intracoastal Waterway were used as initial and boundary conditions respectively. The tidal velocities in the inlet gorge and tidal fluctuations in the Atlantic Intracoastal Waterway were computed with the numerical simulation flow model and compared with field data. The Galerkin finite element flow model performed well considering the complex nature of flow in a tidal inlet.

ACKNOWLEDGEMENT

The authors wish to express their thanks to Mrs. Paula Howell for editing and typing the manuscript and to Mr. Larry Watson for the drafting of the figures.

-

TABLE OF CONTENTS

Pa	ge
List of Tables	
List of Figures	í
Introduction	
General	
Objective of Project	
Review of Literature	
Numerical Flow Model	
The Governing Equations	
Junction Conditions	
Finite Element Method)
Solution System)
Conceptual Flow Chart and Computer Program 13	;
Application of Numerical Simulation Model	
Carolina Beach Inlet	÷
Hydrographic Cross Sections	1
Model Verification	
Conclusion	
References	
Appendices	
Appendix A. Conceptual Flow Chart for Main Program . 31	
Appendix B. Computer Program	

Appendix C.	Computer Program Variables 43
Appendix D.	Computed Tidal Fluctuations in Carolina Beach Inlet Channels 46
Appendix E.	Computer Tidal Velocities in Carolina Beach Inlet Channels

.

.

LIST OF TABLES

1.	Computer Program Variables	44
2.	Computed Tidal Fluctuations in Carolina Beach Inlet Channels	47
3.	Computed Tidal Velocities in Carolina Beach Inlet Channels	51

Page

•

LIST OF FIGURES

		Page
1.	Definition Sketch	3
2.	Flow at Junctions	6
3.	Shape Functions	14
4.	Location Map	16
5.	Carolina Beach Inlet, North Carolina from 1956 to 1972	17
6.	Carolina Beach Inlet, North Carolina 1976	18
7.	Carolina Beach Inlet, February 1972	19
8.	Atlantic Intracoastal Waterway and Snows Cut, North Carolina	20
9.	Carolina Beach Inlet, North Carolina	21
10.	Hydrographic Cross Section of Range 2	22
11.	Hydrographic Cross Section of Range 3	23
12.	Hydrographic Cross Section of Range 4	24
13.	Tide at Range 1	25
14.	Tide at Range 2	26
15.	Velocities at Range 3	27
16.	Conceptual Flow Chart for Main Program	32
17.	Computer Program	35

vi

General

Tidal inlets are major features of the Atlantic Coast barrier islands. The inlets exert a major influence on the stability of the coastline and on the dynamics of coastal estuaries. Tidal inlets affect the coastal processes along the shoreline. They control the circulation and flushing in estuarine systems. Inlets affect navigation, recreation and fish migration.

Coastal engineers concerned with the development of new tidal inlets on sandy barrier islands need simulation models to predict the flow dynamics of tidal inlets. Flow models are also needed to assess the impact of natural or man made alterations to the inlet environment.

Objective of Project

The objective of this project was to develop and calibrate a numerical flow model for a typical Atlantic Coast barrier island tidal inlet.

Review of Literature

The finite difference scheme and the characteristic theory have been used in the development of numerical models for unsteady flow in coastal inlets. Shubinsky et al (1965) analyzed tidal flow in the Sacremento-San Joaquin Delta. They discretised the zone with finite elements but used a finite difference scheme for the analysis. Amein (1975) introduced the effects of channel junctions (via the conservation of mass and energy equations) into an implicit finite difference scheme. Hinwood and Wallis (1975) have reviewed the use of numerical models in tidal hydraulics.

The use of finite element methods for analyzing flow in tidal inlets is of comparatively recent origin. While using the finite element technique two approaches are possible: (1) the methods based on variational principles and (2) the methods of weighted residuals.

Variational principles do not exist for many fluid flow problems because the situations do not yield a functional which has a stationary value within the time and space domain of interest. An extensive discussion on this topic is given by Finlayson (1972). The methods of weighted residuals are, however, quite general and do not require the existence of a functional. Among the many methods of weighted residuals, the Galerkin technique is particularly advantageous when coupled with the finite element analysis. The weighting functions of the Galerkin technique and the shape functions of the finite element have a direct relationship. Moreover, satisfying the boundary conditions using the nodal values has an added advantage when using the Galerkin technique. The effectiveness of this technique in solving initial value problems has been demonstrated in recent years. Taylor and Davis (1975) have analyzed the two dimensional tidal flow in the Southern North Sea using cubic isoparametric elements. They also indicated how implicit equations can be developed (leading to the use of large time steps) when the finite element in time is coupled with the finite element in space.

NUMERICAL FLOW MODEL

The Governing Equations

Taking the atmospheric pressure to be the datum and omitting the tide generating forces, the coriolis force and the wind force, the one-dimensional momentum equation can be written as:

where U is the one-dimensional velocity, η is the instantaneous water level above a reference datum, g is the acceleration due to gravity, A_f is the friction term and x and t are the independent variables of space and time as shown in Figure 1.

where u is the point velocity and is a function of z at a given section and h is the depth. While adopting the one-dimensional approach the kinematic equation is written as:

which assumes unit width in the y-direction. In analyzing inlet flow, variation of the area of flow with respect to x must be taken into account; hence, the equation to be used for unsteady flow is written as:

where A is the area of flow and is a function of x and n.

FIGURE I. DEFINITION SKETCH.

Equations 1 and 4 give the mathematical description of the inlet flow. The friction term in Equation 1 and the area in Equation 4 can be approximated as follows:

(1) The friction term is expressed using Manning's Equation for open channel flow:

The friction slope is given by:

where n is Manning's constant, and R is the hydraulic radius.

It should be noted that both the area and wetted perimeter are functions of the instantaneous water level at a given section.

(2) The area of flow can be expressed as a linear function of η following Amein (1975):

where A^0 and A^1 are the section parameters.

(3) The wetted perimeter can also be expressed similarly:

$$P = P^0 + P^1 \eta \dots 8$$

Equation 4 can now be rewritten as:

$$\frac{\partial (A^{0}A^{1}\eta)}{\partial t} + \frac{\partial}{\partial x} ((A^{0} + A^{1}\eta)U) = 0 \qquad \dots \qquad \dots \qquad \dots \qquad 9$$

or

. . .

The branches of an inlet are assumed to be of uniform cross section and therefore, A^O and A^I are constants for a

given channel. Equation 10 can then be written as:

or

Thus, after introducing the approximations, the mathematical model for analyzing inlet flow is given by Equations 13 and 14.

<u>Junction Conditions</u>. The equations to be satisfied at the junctions of channels are the conservation of mass and energy.

Considering the flow in the channel branches of Figure 2, the following equations can be written:

The subscripts stand for the respective channels and the quantities U, n, and A refer to the values near the junction. However, while adopting the Galerkin technique in solving the initial value problem under consideration, the time rates of quantities are involved. It is, therefore, advantageous to

express the junction equations in terms of these rates. Taking the time derivative of quantities in Equations 15, 16 and 17 results in the following equations:

Using the dot notation for the time derivatives and remembering that the area of flow is given by Equation 7, the junction Equations 18, 19 and 20 can be simplified to yield the following:

$$A_1 \dot{U}_1 + U_1 A_1^1 \dot{n}_1 + A_2 \dot{U}_2 + U_2 A_2^1 \dot{n}_2 = A_3 \dot{U}_3 + U_3 A_3^1 \dot{n}_3 . 21$$

$$\frac{U_1\dot{U}_1}{g} + \dot{n}_1 = \frac{U_3\dot{U}_3}{g} + \dot{n}_3 \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 22$$

It is to be noted that in Equation 21 the prime used with A denotes the section parameter as defined in Equation 7. The three Equations 21, 22 and 23 contain the six unknowns:

$$\dot{v}_1$$
, \dot{v}_2 , \dot{v}_3 , \dot{n}_1 , \dot{n}_2 and \dot{n}_3

Three of the unknowns will be supplied from appropriate boundary conditions at the ends of the channels. Solutions are obtained for the remaining three unknowns from the Equations 21, 22 and 23.

Boundary and Initial Conditions. The tidal fluctuations η at the inlet gorge will be supplied as the forcing function. The velocity fluctuations of the downstream ends of the channels

will be given as additional boundary conditions. The initial conditions include the values of velocities and water levels at selected points which serve as the nodes in the numerical scheme. Thus, the boundary and initial conditions for a system of channels shown in Figure 2 will be as follows: (the second subscript stands for the nodes).

 $\dot{n}_{3,2}$ for all t $\dot{v}_{1,1}$ for all t $\dot{v}_{2,1}$ for all t $n_{1,1}$, $n_{1,2}$, $n_{2,1}$, $n_{2,2}$, $n_{3,1}$, $n_{3,2}$ at t = 0

 $U_{1,1}, U_{1,2}, U_{2,1}, U_{2,2}, U_{3,1}, U_{3,2}$ at t = 0

The Galerkin Principle. There are several methods of weighted residuals like the Galerkin, collocation, least squares, etc. In all these methods an approximation function is selected to represent the variables which on substitution in the governing equation yields a residual. This residual is then forced to be zero by adopting a weighting function and making the integral of the product go to zero as shown:

 $\int_{D} RW = 0 \dots 24$

where R stands for the residual, W the weighting function and D the domain under consideration. The different ways of selecting the weighting function leads to different methods of weighted residuals.

The Galerkin technique employs the principle, that, if the solution of the equation (L is an operator, \emptyset the unknown and f a known function):

can be expressed as a combination of functions N_1 , N_2 , etc.

in an interval I, then the function LO-f is orthogonal to each one of those functions in that interval

$$\left. \int (L \emptyset - f) N_{1} = 0 \right|$$

$$\left. \int (L \emptyset - f) N_{2} = 0, \text{ etc.} \right\rangle$$

$$\left. \ldots \ldots \ldots \ldots 26 \right|$$

Assuming an approximation for \emptyset in the form:

where the \emptyset_i 's are known functions and the a_i 's are the unknowns.

Substituting for ϕ in Equation 25 yields:

where R is the residual resulting from the approximation. Imposing the orthogonality condition given by Equation 26 yields: γ

 $\int (L\overline{\emptyset} - f) | \theta_1 = 0$ $\int (L\overline{\emptyset} - f) | \theta_2 = 0, \text{ etc.}$ 29

This means that there are m equations to solve for the coefficients a_i , where $i = 1, \ldots, m$.

By comparing Equation 29 with Equation 24 it is seen that the weighting functions in the case of the Galerkin technique are the trial functions chosen to represent the variable as in Equation 27.

Finite Element Method

The inlet system is discretised using line elements, each channel being represented by a single element. The variables inside the element are approximated using the nodal values of the variables and the shape functions:

Where U_i and η_i are the nodal values and N_i is the shape function corresponding to that node. Symbol m stands for the number of nodes in an element. In general the shape functions for U and η can be different. In the present analysis the same shape functions are adopted for both the variables for simplicity.

Solution System. On substituting the values of U and η from Equations 30 and 31 into Equations 13 and 19 the following results:

$$\frac{\partial}{\partial t} \left(\sum_{i=1}^{m} n_{i} N_{i} \right) + \left(\frac{A^{O}}{A_{1}} + \sum_{i=1}^{m} n_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial}{\partial x} \left(\sum_{i=1}^{m} n_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial}{\partial x} \left(\sum_{i=1}^{m} n_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial}{\partial x} \left(\sum_{i=1}^{m} n_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial}{\partial x} \left(\sum_{i=1}^{m} n_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i} N_{i} \right) \frac{\partial U}{\partial x} + \left(\sum_{i=1}^{m} U_{i}$$

Rewritten, Equation 32 becomes:

Γ

$$\sum_{i=1}^{m} (N_i \frac{\partial}{\partial t} U_i) = - \begin{bmatrix} (\sum_{i=1}^{m} U_i N_i) & (\sum_{i=1}^{m} U_i \frac{\partial}{\partial x} N_i) + g \sum_{i=1}^{m} \\ i = 1 \end{bmatrix}$$

At the initial time the nodal values of U and η are known and hence the right side of Equations 34 and 35 are functions of x. Equations 34 and 35 can be written as:

Now the Galerkin technique is used; i.e. the terms in Equations 36 and 37 are multiplied by the shape functions $N_j(j=1,m)$ and integrated over the element.

$$\int_{\ell} (N_j \sum_{i=1}^m N_i \frac{\partial U_i}{\partial t}) dx = \int_{\ell} (f_1(x) N_j) dx \dots \dots 38$$

As the number of nodes is m, there are m equations of the type in Equation 38 and m equations of the type in Equation 39.

The 2m equations thus obtained can be arranged in the matrix form as shown below:

The members of the matrix C are given by

$$\mathbf{c}_{i,j} = \int_{\ell} \mathbf{N}_{i} \mathbf{N}_{j} \, \mathrm{d}\mathbf{x} \, \ldots \, 42$$

The column vectors U and n represent the unknown time rate of change of these variables. The column matrices B_1 and B_2 are the quantities obtained from the RHS of Equations 38 and 39.

The solution of the system of Equations 40 and 41 yields the time derivatives of U and n. Using these values, U and n can be advanced in the time domain by a time stepping procedure.

Time Integrations. Assuming that the values of U and η are known at an instant the Euler Predictor-Corrector procedure can be adopted for integration in the time domain.

 $\mathbf{U}_{t+\Delta t}^{P} = \mathbf{U}_{t} + \dot{\mathbf{U}}_{t} (\Delta t) \dots (\Delta t) / 2 \dots (\Delta$

The superscript p stands for the predictor and c for the corrector. As it can be seen from Equations 43 and 44 the corrector equation is based on the mean of the rates of change at t and t+ Δ t. The value of $\hat{U}_{t+\Delta t}$ is obtained by using the predicted values (i.e., UP). A similar procedure is adopted for η . To test the improvement in accuracy as a result of using higher order predictor-corrector methods the third order Adams Moulton method was used for time integration. The Euler Predictor-Corrector was found to be adequate.

Double Sweep Process. The double sweep process has been used in the past to solve channel networks. This is found to be useful in the present analysis. Here the channels are first solved for U or n as the case may be and after satisfying the junction conditions they are solved for the other unknown. If a purely explicit method is adopted for the time integration then the double sweep technique resulted in instability. However, the predictor-corrector algorithms effectively removed the anomaly introduced by that technique.

Choice of Shape Functions. The trial function in the Galerkin approximation should be such that they satisfy the following conditions: (1) completeness and (2) linear independence.

The first condition implies that the functions must belong to a set taking sufficient terms of which we can approximate any function in the region under consideration. The second states that the functions are not related to each other by a proportionality constant.

An attempt was made to analyze an inlet using the linear and quadratic shape functions commonly used in the finite element method. The linear and quadratic shape functions introduced spurious water slopes which led to oscillatory instability during computation. A parabolic shape function was utilized since the water surface conforms more or less to a parabola. The parabolic shape function for the instantaneous water level was chosen as shown in Figure 3. The same shape function was adopted for the velocity. The parameter 'D' in the expression for the shape function was found characteristic to a particular inlet. This shape function gave good results while at the same time making the convergence rapid.

Conceptual Flow Chart and Computer Program

The conceptual flow chart for the main program is shown in Figure 16 (Appendix A). The computer program with subroutines is shown in Figure 17 (Appendix B). Variables in the computer program are defined in Table 1 (Appendix C).

APPLICATION OF NUMERICAL SIMULATION MODEL

The coastline of the southeastern United States is primarily composed of sandy barrier islands which are separated from the mainland by elongated lagoons containing expansive marshlands. The marshlands or estuarine areas are characterized by salt marsh and shallows interlaced with small tidal channels. The Atlantic Coast barrier islands are breached by tidal inlets. One of these inlets under investigation by the U.S. Army Corps of Engineers (1976) is Carolina Beach Inlet, North Carolina.

Carolina Beach Inlet

Carolina Beach Inlet is located in the coastal zone of

FIGURE 3. SHAPE FUNCTIONS.

the southeastern region of North Carolina. The Inlet is approximately 18 miles (29 kilometer) north of the Cape Fear River in New Hanover County as shown in Figure 4. A history of the inlets is shown in Figures 5 and 6.

Carolina Beach Inlet was first opened in 1952 by excavating through the barrier island. The inlet connected the 12 ft. (3.7 m) deep Atlantic Intracoastal Waterway (AIWW) through a 15 ft. (4.6 m) deep gorge to the Atlantic Ocean over an ocean bar as shown in Figure 7. The ocean bar was 3 to 4 ft. (0.9 to 1.2 m) deep below mean low water (MLW). The inlet is connected with the Cape Fear River through snows cut as shown in Figure 8. Snows cut was completed in 1970 while connecting channels between the Atlantic Intracoastal Waterway and Masonboro Inlet were completed in 1957.

Hydrographic Cross Sections. The U.S. Army Corps of Engineers (1976) collected hydrographic data for locations shown in Figure 9. Cross sections and cross-sectional areas for ranges 2 through 4 are shown in Figures 10 through 12.

The cross-sectional areas and wetted perimeters were expressed as a linear function of instantaneous water level in the numerical model.

Tide and Current Data. The U.S. Army Corps of Engineers (1976) collected tide and current data at ranges 2 through 4.during November 1974. The tide near range 3 (i.e., $n_{3,2}$) in the inlet gorge and the current velocities at range 2'and 3 (i.e., $U_{1,1}$ and $U_{2,1}$) in the Atlantic Intracoastal Waterway were used as initial and boundary conditions respectively.

The inlet was subject to a tidal range of about 4 ft. (1.2 m) an average spring range of 4.7 ft. (1.2 m) and to higher stage resulting from hurricane storm surges.

Model Verification

The model was verified with the tidal and current data supplied by the U.S. Army Corps of Engineers (1976) for Carolina Beach Inlet, North Carolina. The velocities in the inlet gorge (i.e. $y_{3/2}$) and tidal fluctuations in the Atlantic Intracoastal Waterway² (i.e. $\eta_{1/1}$ and $\eta_{2/1}$) were computed in the numerical simulation flow model. The computed values for tide and current are given in Appendices D and E and are compared with the field values in Figures 13 through 15.

CONCLUSION

The analysis suggested by Taylor and Davis (1975) has

FIGURE 4. LOCATION MAP.

FIGURE 5. CAROLINA BEACH INLET, NORTH CAROLINA FROM 1956 TO 1972.

FIGURE 6. CAROLINA BEACH INLET, NORTH CAROLINA IN 1976.

FIGURE 7. CAROLINA BEACH INLET, FEBRUARY 1972.

FIGURE 8. ATLANTIC INTRACOASTAL WATERWAY AND SNOWS CUT, NORTH CAROLINA.

FIGURE 10. HYDROGRAPHIC CROSS-SECTION OF RANGE 2.

FIGURE 11. HYDROGRAPHIC CROSS-SECTION OF RANGE 3.

TOTAL AREA OF RANGE

6210 7305 8510

FIGURE 12. HYDROGRAPHIC CROSS - SECTION OF RANGE 4.

been used for inlets characterised by junctions adopting a one dimensional approach. The vertically integrated equations of momentum and mass conservation (Leendertse (1967)) are used with the appropriate boundary and initial conditions. The Galerkin technique is coupled with the finite element method in analyzing an inlet with channel junctions. The method has several advantages in that the coefficient matrix in the solution system does not change as the model is stepped ahead in time.

The shape function adopted here is problem oriented and is not a general 'basis function.' The parameter 'D' was found to be 700 times the length of the element, ℓ , for Carolina Beach Inlet. The parabolic shape function satisfies only the requirement of linear independence. The completeness requirement was not fulfilled by the shape function; therefore, only long elements of the order of 600 ft. (183 m) to 1000 ft. (305 m) were adopted. For these lengths the error introduced was found to be low.

The Galerkin finite element model for flow in an inlet was found satisfactory considering the complex nature of the flow in a tidal inlet.

REFERENCES

Amein, M., (1975), "Computation of Flow Through Masonboro Inlet, N. C.", <u>Journal, Waterways, Harbors and Coastal</u> Engineering Division, ASCE, Vol. 101, No. WW1, Proc. Paper 11124, pp 93-108.

Finlayson, B. A., (1972), The Method of Weighted Residuals and Variational Principles, <u>Academic Press</u>, New York.

Hinwood, J. B. and I. G. Wallis, (1975), "Review of Models of Tidal Waters", <u>Journal, Hydraulics Division, ASCE</u>, Vol. 101, No. HY11, Proc. Paper 11693, pp 1405-1421.

Leendertse, J.J., (1967), A Computational Model for Long Period Water Wave Propogation, <u>RAND Memorandum</u>, RM-5294-PR, Santa Monice, California.

Shubinsky, R. P., J.C. McCarty and M.R. Lindoy, 1965, "Computer Simulation of Esturile Networks", <u>Journal, Hydraulics</u> <u>Division, ASCE</u>, Vol. 91, No. HY5, Proc. Paper 4470, pp 33-49.

Taylor, C. and J. M. Davis, (1975), "Tidal and Long Wave Propogation - A Finite Element Approach", <u>Computers and</u> <u>Fluids</u>, Vol. 3, pp. 125-148.

U.S. Army Corps of Engineers, (1976), "Data Report for Carolina Beach Inlet, N. C.", <u>USACE Report</u>, Wilmington, N.C.

U.S. Army Corps of Engineers, (1976), "Preliminary Assessment of Alternatives for Navigation Improvements at Carolina Beach Inlet, N.C.", <u>USACE Report</u>, Wilmington, N.C. 122 p.

APPENDICES

APPENDIX A

CONCEPTUAL FLOW CHART FOR MAIN PROGRAM

INITIALIZATION AND INPUT

Read in the number of channels in the inlet system, the number of nodes per element, ΔX for numerical integration of the Galerkin Integral, the area parameters and the wetted-perimeter parameters for each channel, Δt for numerical integration, number of time steps in the tidal cycle, the parameter ω for predicting the values at the next instant and finally the upstream and downstream boundary conditions. Supply initial values of stage and velocity at all nodes.

Note: I = Time Instant NTS = Total Number of Time Steps.

Figure 16. Conceptual Flow Chart for Main Program.

Figure 16. Conceptual Flow Chart for Main Program (Cont.d).

APPENDIX B

COMPUTER PROGRAM

DIMENSION X8(5),XE(5),MM(5),X(5,11) OIMENSION U(5,11),Y(5,11),QD(5,11),YD(5,11),ARO(5),AR1(5),PRO(5), IPR1(5),BM(11),C(5,11,1),AO1(5),EL(5),Z(10),UF(5,11),YF(5,11), ZUS(5,11),QDF(5,11),YDF(5,11),AO1(5),EL(5),Z(10),UF(5,11),PR(5,11), AR(5,11),S(5,11),YDF(5,11),AO1(5),UP(5,11),PP(5,11),PR(5,11), OIMENSION QC11(26,3),QDZ1(26,3),YD33(26,3) DIMENSION V1(5),V2(5),AL(51,CK(5),SK(5),C1(5),C2(5),H(5)) DIMENSION VEL(27) IQ=3 FP=700 F(1)=2 F(2)=2; P(2)=2; P(3)=2 FGRMAT (7:20,FP =.F7.2) FGRMAT (514) PEAD(1,20) ADEG.NC 20 FGRMAT (514) PEAD(1,30)(EL(J).J=1.NC) READ(1,30)(EL(J).J=1.NC) READ(1,30)(EL(J).J=1.NC) READ(1,30)(EL(J).J=1.NC) AD FGRMAT (5F8.1) AD FGRMAT (5F8.2) CO FGRMAT (170) (5003(1.J).J=1.3).1=1.26) READ(1,70) (5003(1.J).J=1.3).1=1.26) READ(1,70) (5003(1.J).J=1.3).1=1.26) READ(1,70) (5003(1.J).J=1.3).1=1.26) READ(1,70) (5001(1.J).J=1.3).1=1.26) READ(1,70) (5001(1.J).J=1.20) READ(1,70) (5001(1.J).J=1.20) READ(1,70) (7001(1.J).J=1.20) READ(1,70) (7001(1.J).J=1.20) READ(1,70) (7001(1.J).J=1.20) READ(1,70) (7001(1.J).J=1.20) READ(1,70) (7001(1.J).J=1.20) READ(1,70) (7001(1.J).J=1.20) READ(1,70 t BEACH INL ŝ ANAL YST I NPUT Ľ, **GALERKIN** AND CAROL INA 1 INITIAL ISATION COMPUTER PROGRAM 17. FIGURE 80 0 M **0** 20 o 60 20 80 06 -**΄ υ ψ ψ υ** υ 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

FIGURE 17. COMPUTER PROGRAM (CON'T.)

D0 140 J=1.NC ; M=MM(J) ; MP1=M +1 ; WM1=M-1 D0 100 I=1.WP1 DA=(FEL(J)+XB(J)-DELX*(I-1))/H(J))**(1/P(J)) -(XB(J)/H(J))**(1/P(J)) DB=(XB(J)+DELX*(I-1))/H(J))**(1/P(J)) -(XB(J)/H(J))**(1/P(J)) B(1+1)=DA*DA B(1+1)=DA*DA B(1+1)=DA*DA B(1+1)=DA*DA DC 110 K=2.W.2 DC 110 CC 10 CC AND A{L: !]+8{L, MP1 })+UELX/3 A(1,2)=A(2,1) MATRIX FUNCTIONS COEFFICIENT CALL GINV (A.C.N.JZ.B) CONTINUE DO ISA SHAPE 2+A(L+) A(L,1)=B(L,K)*?+A! A(L,1)=B(L,K)*?+A! A(L,1)=(B(L,1)+A! A(2,2)±A(3,1); A(JZ=J ; **•** 150 J=1.NC N•1=7 1)1=(^+ YFLE NC=1 UFI 00 100 110 021 021 140 150 υυυυυ u 00590

ł

36

FIGURE 17. COMPUTER PROGRAM (CON^tT.)

.

	- 				:														۲ . ۸	5
	•																			- -
																			<u>ү</u> н	•
																			цF.	5
	÷																		0	
	i				-														0N - 5	
																			N N	
																			1.1	
VES	; ;				80	I													ري	-
VATI				010	1														Z • 1 0	6
ERI I RE				410	800			• •	,										R.A.	ž
0		_		1 * M	17			180)) 								_		а. ч	1 • 0€
HE		<u>[</u>]		÷ a>	(ZX)			.287								(1.1)		1 1 1	VD.A	N. N.
S	, M	412		EX X +				E/C								* 7 (.		•	00	N.Y
		1 • E		アンビ		0		LLN								5	5	•		S + X
LI CH	0	ΥΡ	9			"0#		IXN.		~		0	1			ARI	1241			1
5	12	SIN	11 11	CR 1	3 J	1.1)		100	ſ	E/ LC	1.10		•	Q 2	Z				SOLU	V2 .A
	۲ ۲	* 1 2	ZX	<u> </u>	د د	ap	LL R	=YD	Ē	C≝L C	÷∀ 1	۲ ۲	•	•••		ARO	D R O		•	</th
			0 N	+ ×××		1)2	0	CZ +	0/0		00	00		5 0	0	=(]		1+		10
		<u>ר</u> ה	m.	<u>ה</u>	.11	1.62.	m n	O I O	09=00	1=0	m 	2	0	<u>م</u> ر م	- 17	• C):		AN I	Ļ	.
	Ö	2	ŭ	N N	0 0	00	0	2	لک اب	Ļ	00	00	X	000	0	K	C C C	Z	₹ U	1 R 1
														0			170			
	0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	Ð	0	0	0	0	Ċ	с, С
880	1080 0000	160		- - - - - - - - - - - - - - - - - - -	1460	0951	0961	14 60	99.80	1660	100	1010	102(No a	1040	105(1060	107(1080	109(

.

FIGURE 17. COMPUTER PROGRAM (CON'T.)

					1		- 11 本名語し		.		
					1			1		j.	n gan an shi Na sa tini Na sa tini
						•	s				
							en en en el componente de la componente de La componente de la compone		dan si ji Si tiri	ł	5
			;								
					· · · ·					:	l.
					-						5
	~				÷					, j	í.
	U Z						· ·				2
							÷			, ,	2
	∥				<u>.</u>	на. М.	s e de las 19 - X ent				Days Bas
	:				÷	с Ш			•	1	i.
	Z				-	STE			ر. مؤسس ا	1	a se
	101					•	51			1	u U
•	~					хт	6		, ČČ	ļ	3
					2	, W	54		NN		
	IJ			- 3		ш	-	r	- 77		¥
~						۲.	0))	55		F aller
	Ê				7 III	ğ	_		4 4 14 14	.i	agagsea ¥≎us
• N					- 4 - 11 (1994) -	· 7	- 	Z	Zww	' Z	Ö.
9 =	-			2 H					*동동		
2F1	1)7					S S S		Ĩ	100		
I30.F6 5X,2F1	-1)Y, (1			;;;;;;-	0 J=1.	L'UÊS F		0 1=1.		J=1-	N
	[,1),Y(I,	L		-1)ah-(f 1)ah-(f	280 J=1. YDF(I.J) P([.J)=Y	VALUES F	270 141.	250 1=1.	100+17-1	220 J=1.	AT ION
WE:.730.F6 2.3.5X.2F1	IME	υτ		1,1,1,-(L,1) -UP(L,1) -UP(L,1)	1 280 J=1. ; YDF(I.J) ; YP([.J)=Y	L VALUES F	0 270 1m1.	• 250 I=1•	1 - C - C - C - C - C - C - C - C - C -	220 220 220 J=1	EGRAT ION
TI NE • • T30 • F6 F12 • 3 • 5X • 2F1	TIME (1,1), Y(I	JTPUT			DD 280 J=1.	I AL VALUES F	00 270 1m1.	40,2560 1=1.	00 230 Jm1 -	96.220 96.220 00.220 00 210 J=1.	NTEGRATION
. TI NE" . T30.F6 . 2F12.3.5X.2F1	5 0) TIME 0) (Y(I.1),Y(I.	OUTPUT) +V + (U (1, J) -UP () +V + (U (1, J) -UP () +('(1, J) - VP () +('(1, J) - VP (. Do 280 J=1. (L.); YDF(I.J) 770(L.))#Y	TRIAL VALUES F	.1.)/ULJ.11-1-1	240,260 I=1.		C. 180.220 190.220 •200.220 •200.220	INTEGRATION
26, 11 ME*, 730,F6 10, 2512, 3, 5X, 251	0.5 330) TIME 340) (Y(I.1),Y(I.	OUTPUT			NC: DD 280 J=1. (1); YDF(1) YP(1); YP(1)	TRIAL VALUES F	HC : 00 270 1-1.	40.240.250 I=1. NC : DD 250 I=1.	MC 100 230 Jm1 MC 100 230 Jm1 MC 101 100 101	18(119(220 50,19(220 00,200,220 NC : DO 210 J=1.	INTEGRATION
/T2C.ITLME730.F6 /T10.2F12.3.5X.2F1	N*0.5 1, 330) TIME 1, 340) (Y(I.1),Y(I.	OUTPUT		7([]) 1)+## (U([])-UP(1)+('([])-YP(1])	=1.NC ; DO 280 J=1. = 20 (1.J) ; YDF(1.J)	TRIAL VALUES F	US(J. 1) /UCJ. []-1-1	140.240.260 1-10.240.260 1-11.12	00(1,1) 1mL 00 230 1ml 100+(L-1)00 1-1.	1 186.180.220 150.190.220 200.200.220 1.NC : DD 210 J=1.	INTEGRATION
	KN JKN+0.5 (3, 330) TIME (3, 340) (Y(I.1),Y(I.	DUTPUT	UE)=7([])+W+(U([.])-UP(=U([])+W+(U([.])-UP(=V([])+('([])-VP([.	1=1.NC; DD 280 J=1. U)=QD(1.J); YDF(1.J))=UF(1.J); YP(1.J)=Y	JE TRIAL VALUES F	160 HC : DO 270 1m1.		1=00(1.) 1=1 NC 1 00 230 Jm1 VF(1.)+(V0(1.)+00F VF(1.)+00(1.)+00F	I 1 200.180.220 I 150.190.220 I 200.200.220 I=1.AC : DO 210 J=1.	INTEGRATION
47 (/T2C, TIME, 730,F6 1AT (/T10,2F12,3,5X,2F1	=JKN =JKN+0.5 ≡ (3, 330) TIME 1€ (3, 340) (Y(I.1),Y(I.	DUTPUT	INUE	.])=Y([.]) J)=U([.])+W*(U([.])-VP(J)=Y([.])+Y*(U([.])-VP(<u>1</u> . J)=Y(I)+(Y([])-VP(<u>1</u> .	80 1=1.NC ; DD 280 J=1. 1.J)=QD(1.J) ; YDF(1.J) 	INUE TRIAL VALUES F	70 J=1.NC ; 00 270 1mL; ABS(US(J.1)/ULJ.[]-1.1	1)=07(1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	0 230 4=1 1 = 1 = 0 [1, 1] 1 = 1 = 0 = 230 4=1 1 = 1 = 1 + 0 = 1 + 0 = 1 +	KN-11 150.190.220 N-1) 150.190.220 (A-1) 200.200.220 (A-1) 200.200.220 (A-1) 200.200.220	
JRMAT (/T2C. TINE'.730,F6 JRMAT (/T10,2F12.3.5X.2F1 IQP	IKN=JKN ME=AJKN+0.5 ME=AJKN+0.5 ME=(3, 330) TIME 11TE (3, 340) (Y(1,1),Y(1	QUTPUT	NTINUE	<pre>([; J)=Y([; J) +W+ (U ([; J)-UP ([, J)=U([; J) +W+ (U ([; J)-VP ([, J)=([; J)+(Y([; J)-VP ([; J)-VP ([; J)+VP ([; J)+VP</pre>	280 I=1.NC ; DO 280 J=1. F(I.J)=QD(I.J) ; YDF(I.J) (I.J)=UF(I.J) ; YDF(I.J)=Y	NTINUE TRIAL VALUES F	TO 160 270 J=1.NC : 00 270 1=1. 1 ABS(US(J.1)/U(J-1)-1.1	[+J)=U (1+4+1+1+2+0+250 (NA-1) 240+240+250 250 J=1+NC ; 00 2550 I=1+ (J+1)=U(J+1)	([,])=00([,]) 230 [=1 NC ; 00 230 Jml ;])=YF([,])+(YD([,])+VDF	(JKN-1) 1864180.220 (LLN-1) 150.196.220 (NA-1) 200.200.220 210 I=1.NC : DD 210 J=1.	INTEGRATION
CUNTING (T2C, T1ME, T30,F6 FORMAT (/T10,2F12,3,5X,2F1 STOP	AJKN=JKN TIME=AJKN*0.5 WRITE (3, 330) TIME WRITE (3, 340) (Y(I.1),Y(I.	DUTPUT	CONTINUE	YF([,J)=Y([,J) U([,J)=U([,J)+W+(U([,J)-UP(V([,J)=V([,J)+(Y([,J)-YP([, Y([,J))=Y([,J)+(Y([,J)-YP([,J)	DO 280 I=1.NC ; DO 280 J=1. ODF(I, J)=OD(I.J) ; YDF(I.J) UP(I.J)=UF(I.J) ; YP(I.J)=Y	CONTINUE TRIAL VALUES F	00 270 J=1.NC ; 00 270 141.	U([+J]=U(1+J+11100260 FF (NA-1) 240.240.260 S2 250 J=1.NC ; D0 250 I=1. S2 250 J=1.VL ;	20 [1, J]=00 [1, J] 20 230 [=1, WC : 00 230 Jm1 7(1, J)=VF(1, J)+(VD(1, J)+VDF 7(1, J)=VF(1, J)+(00(1, J)+00F	(# (JKN-11 18641804220 (F(LLN-1) 15041904220 (F (NA-1) 20042004220)0 210 1=1464 00 210 J=14	INTEGRATION
30 FORMAT (/T2C. TINE'. 730.F6 30 FORMAT (/T10. 2F12.3.5X.2F1 6 FORMAT (/T10. 2F12.3.5X.2F1	AJKN=JKN TIME=AJKN*0.5 WRITE (3, 330) TIME WRITE (3, 340) (Y(I.1),Y(I.	DUTPUT	O CONTINUE O CONTINUE	VF([,])=V([,])+W+(U([,])-VP(U([,J)=U([,J)+W+(U([,J)-VP(V([,J)=Y([,J)+YY(Y(1,J)-VP(I_)	DD 280 I=1.NC ; DD 280 J=1. QDF(I.J)=QD(I.J) ; YDF(I.J) UP(I.J)=UF(I.J) ; YP(I.J)=Y	O CONTINUE TRIAL VALUES F	0 00 270 J=1.MC ; 00 270 1-1.	0 U(I+J)=U(I+J+T+T+2560 1F (NA-I) 240.240.250 I=1. 0 DO 250 J=1.NC ; DO 250 I=1. 0 15(J+1)=U(J+1)	705(1, J)=00(1, J) 0 0230 1=1, NC + 00 230 J=1 7(1, J)=YF(1, J)+YOF 1, J)+YOF	TF (JKN-1) 1864 1804220 1 F(LLN-1) 15041964220 1 F (NA-1) 20042004220 1 F (NA-1) 20042004220 1 D0 210 I=1400 100210 J=14	
320 FUNTING / T2C. IT NE' . 730.F6 330 FORMAT (/T2C. IT NE' . 730.F6 340 FORMAT (/T10. 2F12.3.5X.2F1 340 STOP	A_KN=JKN TIME=A_JKN+0.5 WRITE (3, 330) TIME WRITE (3, 340) (Y(I.1),Y(I.	DUTPUT	300 CONTINUE 310 CONTINUE	YF([.])=Y([.]) U([.])=U([.])+W+(U([.])-UP(U([.])=U([])+W+(U([.])-VP(<u>1</u> . 280 Y([])=Y(1])+YY(1)-VP(<u>1</u> .	DD 280 1=1.NC ; DD 280 J=1. QDF(1, J)=QD(1.J) ; YDF(1.J) UP(1.J)=UF(1.J) ; YP(1.J)=V	270 CONTINUE TRIAL VALUES F	260 00 270 J=1.MC ; 00 270 1mL	230 U([+J)=U(1+J+1120260 1F (NA-1) 240.240.260 240 D0 250 J=1.NC ; D0 250 I=1. 240 D0 250 J=1.NC ; D1 250 I=1.	210 00 (1, J)=00(1, J) 220 00 230 1=1. NC : 00 230 J=1 7(1, J)=77(1, J)+(70(1, J)+707	THE (JKN-11 186-180-220 180 TF (LLN-1) 150-190-220 190 TF (NA-1) 200-200-220 200 DO 210 T=1.NC : DO 210 J=1.	
320 CUMTING (T2C. T1 NE T30.F6 330 FORMAT (/T10. 2F12.3.5X.2F1 340 FORMAT (/T10. 2F12.3.5X.2F1	C AJKN=JKN TIME=AJKN*0.5 WRITE (3, 330) TIME WRITE (3, 340) (Y(I.1),Y(I.	C BUTPUT	300 CONTINUE 310 CONTINUE	YF([,])=Y([,J) U([,J)=U(1,J)+W*(U(1,J)-UP(280 Y(1,J)=Y(1,J)+(Y(1,J)-YP(1, 280 Y(1,J)=Y(1,J)+(Y(1,J)-YP(1,	C DD 280 I=1.NC ; DD 280 J=1. QDF(I.J)=QD(I.J) ; YDF(I.J) UP(I.J)=UF(I.J) ; YP(I.J)=Y	270 CONTINUE TRIAL VALUES	260 D0 270 J=1.HC ; D0 270 I=1.	230 U(1+J)=U(1,4)71120250 16 (NA-1) 240.240.250 240 D0 250 J=1.NC : D0 250 I=1. 240 D12(J=1)=U(J+1)	210 00F(1, J)=00(1, J) 220 00 230 1=1, NC 1 00 230 Jm1 7(1, J)=YF(1, J)+YVF(1, J)+Y0F	TH (JKN-1) 186.180.220 180 [F(LLN-1) 150.196.220 190 [F (NA-1) 200.200.220 200 DU 210 [=1.10 ; DU 210 J=1.	
90 520 500 130 50 50 56 00 330 508MAT (/T2C, TINE, T30, 56 10 340 508MAT (/T10, 2512, 3, 5X, 251 10 340 510P 20 210P	40 C AJKN=JKN 50 TIME=AJKN+0.5 TIME 50 WRITE (3, 330) TIME 70 WRITE (3, 340) (Y(I.1),Y(I.	20 C DUTPUT	10 310 CONTINUE	<pre>YF([.])=Y([.]) YF([.])=U([.])+W*(U([.])-UP(U([.])=U([.])+W*(U([.])-VP(I.) 280 Y([.])=K([])+(Y(1])-VP(I.</pre>	0 C DD 280 I=1.NC ; DD 280 J=1. 0 DF(I, J)=QD(I, J) ; YDF(I, J) 0 UP(I, J)=UF(I, J) ; YP(I, J)=V	0 270 CONTINUE TRIAL VALUES	0 260 00 270 J=1.MC ; 00 270 1m1.	230 U(1+J)=UT(1+J+T)250 0 240 D0 250 J=1+NC ; D0 250 I=1+ 0 250 U(1+1)=U(1+1)	0 210 00F(1, J)=00(1, J) 0 220 00 230 1=1 %C 1 00 230 J=1 0 Y(1, J)=VF(1, J)+(YD(1, J)+Y0F	0 180 IF(LLN-1) 196-180-220 0 180 IF(LLN-1) 150-190-220 190 IF (NA-1) 200-200-220 200 DD 210 I=1.NC : DD 210 J=1.	
	AJKN=JKN TIME=AJKN*0.5 WRITE (3, 330) TIME WRITE (3, 340) (Y(I.1),Y(I.	GUTPUT	300 CONTINUE 310 CONTINUE	YF([,J)=Y([,J) U([,J)=U(1,J)+W*(U(1,J)-UP(U([,J)=U(1,J)+(Y(1,J)-YP(1, 280 Y(1,J)=Y(1,J)+(Y(1,J)-YP(1, 280 Y(1,J)=Y(1,J)+(Y(1,J)-YP(1,J))	DO 280 [=1.NC ; DO 280 J=1. QDF([.J)=QD(I.J) ; YDF(I.J) UP([.J)=UF([.J] ; YP([.J)=V	270 CONTINUE TRIAL VALUES F	260 D0 270 J=1.NC : D0 270 I=1. IF (ABS(US(J.1)/U(J.1)-1.1)	230 U(1+J)=U(1+J+J+J+2)250 1F (NA-1) 240.240.250 250 J=1.NC ; D0 250 J=1. 250 J=1.NC ; D0 250 J=1.	210 00F(1, J)=00(1, J) 220 00 230 1=1 NC 1 00 230 J=1 7(1, J)=YF(1, J)+(YD(1, J)+YDF	IN (JKN-1) 18(+180.220 180 IF(LLN-1) 150.19(-220 190 IF (NA-1) 200.20(-220 200 DU 210 I=1.AC ; DU 210 J=1.	

- -

FIGURE 17. COMPUTER PROGRAM (CON'T.)

NO SHEAR).C(5,11,11).B(11,201 . ABS(B(L.K))) 500 B(I.J)=B(I.J)-B(I.K)*B(K.J) IF (K .EQ. N) GO TO 700 DO 610 I=KP1.N P1.J2 .J)-B(I,K)#B(K,J) SUBROUTINE - 32 500 600 SLEROUTINE GINV(A,C,M DIMENSION A(11,11),CC DO 1 [=1,N;CO 1 J=1,N B(1,J)=A(1,J) J=N+1;J2=2*N DO 2 [=1,N;DO 2 J=J], B(1,J)=0.0 C B(1,J)=0.0 **N * 1 = 7** KPI=K+1 IF (K •EQ• N) GO TO L#K U) /8(K,K) • GT <u>8</u> • K) J=KP 1, J2 C(JZ+1,J)=B(I,K RETURN END D0 400 1# KP1. IF (L 485(8(1.K) IF (L 485(8(1.K) D0 410 J=K, J TEMP=8(K, J) B(K, J) =8(L, J) B(L, J) =1E(L, J) D0 501 J=KP1. D1 501 J=KP1. 510 I=1,KM1 510 J=KP1,J J=1+N B([,J)=1,0 DD 610 K=1,N 00 610 J=KP1 8(1,J) =8(1,J 1=1,1 IF (X .60. Xm1=X-1 +「=× 00 400 N m 410 500 501 510 600 610 701 1

01990 SUBROUTINE 020000 SUBROUTINE 020000 SUBROUTINE 020100 SUBROUTINE 020100 SUBROUTINE 020100 STARCL 00010 STARCL 00100 STARCL 001000 STARCL <	SUBROUTINE DIMENSION SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE SNERCUTINE SNERCUTINE
---	---

40

FIGURE 17. COMPUTER PROGRAM (CON'T.)

10 C SUBROUTINE SUBR

FIGURE 17. COMPUTER PROGRAM (CON'T.)

.

AX=AR(2.N2)+QD(2.N2)+AR(1.N1)+QD(1.N1)-AR1(3)+YD(3.1)+U(3.1) BX=YD(3.1)-GD(1.N1)+U(1.N1)/9.81 CX=YD(3.1)-GD(2.N2)+U(2.N2)/9.81 GX=U(3.1)/9.42(2.N2)X=AR(3.1);AKX=AR1(2)+U(2.N2) ALX=AR1(1)+U(1.N1)	0D(3.1)=(AX+AKX+CX+BX+ALX)/(AJX-GX+AKX-GX+ALX) YD(1.N1)=BX+QD(3.1)+GX YD(2.N2)=CX+QD(3.1)+GX	J=3 CALL BM1(DELX.VV.MM.BM.J.G.AN.EL.AR.PR.U.Y.X8.M.P) SUM=0 : DO 380 1=2.N 380 SIM=C(1.1.7.XBM/11.AR.M	BW(1)=(00(J,1)-SUM)/C(J,1,1) D0 390 K=1, h ; 0D(J,K)=0 ; D0 390 I=1,N 390 QD(J,K)=0D(J,K)+C(J,K,1)*BM(I)	CALL EM2(MM.BM.J.A01.VV.EL.U.Y.DELX.XB.H.P) SUM=0 : D0 395 I=1.NMI 395 SUM=C(J.N.I)*EM(I)+SUM BM(N)=(YD(J.N)-SUM)/C(J.N.N)	00 400 YD(J+K)=YD(J+K)+C(J+K)=0 ; 00 400 I≍I+N 400 YD(J+K)=YD(J+K)+C(J+K+I)+BM(I)	401 WAS=0 Return : Enc
U 9009999		0000		~~ • • • • • • •	ັບ >ວວ	
	00000000000000000000000000000000000000	1620 1620 05620	020000000000000000000000000000000000000	00200 002000 002000 002000 002000000		

42

APPENDIX C

COMPUTER PROGRAM VARIABLES.

Table 1. Computer Program Variables

Variable	Description
ARO(J)	Area parameter, A _o , of channel, J.
AR1(J)	Area parameter, A, of channel, J.
BM(K)	The right handside of the matrix.
C(I,J,K)	The coefficient matrix for the Channel I, J and K represent the location in the square matrix.
DA	Shape function, N ₁ .
DB	Shape function, N ₂ .
DELX	Distance step, ΔX.
DELT	Time step, ∆t.
EL(J)	Element length of the channel, J.
FP	Corresponds to the distance, D, in the shape function when multiplied by the element length, L.
G	Acceleration due to gravity.
N	Number of nodal points in each channel.
NA	Iteration count while using the Pre- dictor-Corrector.
NC	Number of channels in the system.
P(I)	The highest power of the polynomial that represents the shape function for the channel, I.
PRØ(J)	Wetted perimeter parameter, P _o , of channel, J.
PR1(J)	Wetted perimeter parameter, P_1 , of channel, j.
QD(J,K)	Time derivative of U at the element J and node K.
QD11(I,J)	Time derivative of U of the channel l at node l.

QD21(I,J)	Time derivative of U of the channel 2 at node 1.
SF1 SF2	Energy slopes at the beginning and end of an element.
U(J,I)	Velocity of the channel J, node I.
YF and UF	The values of n and U respectively at an instant to be used in the Euler Pre- dictor-Corrector.
Y(J,I)	Instantaneous water level of the
YD(J,K)	channer J, node L.
YD(J,K)	Time derivative of η at the channel J and node K.
YD33(I,J)	Time derivative of n of the channel 3 at node 2.

APPENDIX D

COMPUTED TIDAL FLUCTUATIONS IN CAROLINA BEACH INLET CHANNELS.

.

TIME	AIWW	(SOUTH) DM	156 (STATI	ON/RANGE 1)	
(HRS.)	FLOW	TIDE NO	<u>DE 1</u>	FLOW	TIDE NO	<u>pe 2</u>
	COND.	(Ft.)	(M)	COIND.	(Ft.)	(M)
08 0 0	EBB	2.97	0.904	EBB	2.772	0.845
0830	4	2.45	0.745		2.293	0.699
0900		2.24	0.681		2.021	0.616
0930		1.987	0.605	1 :	1.696	0.517
1000		1.311	0.399		1.142	0.348
1030		0.996	0.303		0.823	0.251
1100		0.524	0.160		0.353	0.108
1130		0.071	0.022		0.073	0.022
1200		0.201	0.061	1	0.349	0.106
1230		0.723	0.220		0.726	0.221
1300		1.113	0.339		1.064	0.324
1330		1.156	0.352		1.235	0.376
1400	i 🕴	1.484	0.452	Y Y	1.350	0.471
1430	EBB	1,560	0.475	EFB	1.264	0.385
1500	FLOOD	1.002	0.305	FLOOD	0.986	0.300
1530	1	0.644	0.196		0.674	0.205
1600		0.251	0.076	, n	0.136	0.041
1630		0.314	0.096		0.429	0 131
1700		0.911	0.278		0.911	0 278
1730		1.803	0.550		1.616	0.278
1800		1.974	0.602		1.879	0 570
1830		2.318	0.707		2,230	0.680
1900		2.837	0.865		2.778	0.000
1930		2.545	0.776		2.625	0.047
2000	+	3.132	0.955		2.886	0.770
2030	FLOOD	2,361	0.720	FLOOD	2.000	0.600
2100	-				2.200	0.031

TABLE 2. COMPUTED TIDAL FLUCTUATIONS IN CAROLINA BEACH INLET CHANNELS.

TIME	AIWW (NORTH) DM 150 (STATION/RANGE 2)						
(HRS.)	FLOW	TIDE NOD	E 1	FLOW	TIDE NO	DE 2	
	COND.	(Ft.)	(M)	COND.	(Ft.)	(M)	
0800	EBB	2.940	0.896	EBB	2.776	0.846	
0830	1 4	2.434	0.742		2.313	0.705	
0900		2.221	0.677		2.049	0.624	
0930	1	1.977	0.602		1.754	0.534	
1000		1.324	0.403		1.209	0.368	
1030		1.025	0.312		0.907	0.276	
1100		0.576	0.176		0.455	0.139	
1130		0.077	0.024		0.028	0.009	
1200		0.234	0.071		0.277	0.084	
1230		0.595	0.181		0.674	0.205	
1300		0.992	0.302		0.992	0.302	
1330	T	1.356	0.413	†	1.196	0.364	
1400	EBB	1.442	0.439	EBB	1.363	0.415	
1430	FLOOD	1.222	0.372	FLOOD	1.261	0.384	
1500		1.153	0.351	1	0.989	0.301	
1530		0.890	0.271	I I	0.657	0.200	
1600		0.067	0.020		0.099	0.030	
1630		0.527	0.161		0.438	0.134	
1700		0.901	0.275		0.424	0.282	
1730		1.705	0.520		1.652	0.504	
1800		1.941	0.592		1.902	0.580	
1830		2.335	0.712		2.269	0.692	
1900		2.850	0.869		2.794	0.852	
1930		2.571	0.784		2.532	0.772	
2000	T {	3.106	0.947	•	2.889	0.881	
2030	FLOOD	2.331	0.711	FLOOD	2.272	0.693	

TABLE 2. COMPUTED TIDAL FLUCTUATIONS IN CAROLINA BEACH INLET CHANNELS (CONT.).

TIME (HRS.)	INLET GORGE (STATION/RANGE 3)						
	FLOW	TIDE NODE 1		FLOW	TIDE NODE 2		
	COND.	(Ft.)	(M)	COND.	(Ft.)	(M)	
0800	EBB	2.766	0.843	EBB	2,454	0.74	
0830	4	2.264	0.690		2.188	0.66	
0900		1.983	0.604	P	1.822	0.55	
0930		1.622	0.494	Į	1,393	0.42	
1000		1.055	0.321		0.943	0.28	
1030		0.730	0.223		0.490	0.140	
11 0 0		0.255	0.078		0.110	0 03/	
1130		0.149	0.045		0.211	0.03	
1200		0.425	0.129		0.510	0.004	
1230		0.789	0.240		0.779	0.23	
1300		1.077	0.328		0.995	0.207	
1330	T	1.245	0.379	†	1,166	0.00	
1400	EBB	1.369	0.417	EBB	1,205	0.367	
1430	FLOOD	1.264	0.385	FLOOD	1,113	0.30	
1500		0.986	0.300		0.877	0.005	
1530	I T	0.671	0.204	1 P	0.513	0.154	
1600	!	0.139	0.042		0.083	0.100	
1630		0.399	0.122		0.399	0.023	
1700		0.862	0.263		0.934	0.122	
1730		1.564	0.477		1,419	0.433	
1800		1.833	0.559		1.816	0 554	
1830		2.178	0.664	1 1 1	2.141	0.554	
1900	[2.755	0.840		2.410	0.735	
1930	L L	2.512	0.766		2.594	01755	
2000	T	2.879	0.878] 🕇 🚦	2.532	0.772	
2030	FLOOD	2.266	0.691	FLOOD	2.174	0.662	

TABLE 2. COMPUTED TIDAL FLUCTUATIONS IN CAROLINA BEACH INLET CHANNELS (CONT.).

APPENDIX E

COMPUTED TIDAL VELOCITIES IN CAROLINA BEACH INLET CHANNELS.

	*						
TIME	AIWW (SOUTH) DM 156			(STATION/RANGE 1)			
	FLOW	VELOCITY	NODE 2	FLOW	VELOCIT	Y NODE Z	
(HRS.)	COND.	v	v	COND.	v		
		(Ft./Sec.	(M/Sec.)		(Ft./Sec.)	(M/Sec.)	
0800	EBB	0.768	0.234	EBB	0.810	0.247	
0830	1	1.483	0.452		1.860	0.567	
0900		2.159	0.658		2.185	0.666	
0930		2.753	0.839		3.120	0.951	
1000		3.228	0.984		3.484	1.062	
1030	}	3.560	1.085		3.783	1.153	
1100		3.727	1.136		4.163	1.269	
1130		3.724	1.135	1 1	4.026	1.227	
1200	1	3.543	1.080		3.766	1.148	
1230		3.202	0.976	i I	3.461	1.055	
1300	1	2.720	0.829		3.041	0.927	
1330		2.119	0.646		2.323	0.708	
1400	1	1.440	0.439	1	1.207	0.368	
1430	Ţ	0.722	0.220		0.584	0.178	
1500	EBB	0.003	0.001	EBB	0.095	0.029	
1530	FLOOD	0.673	-0.205	FLOOD	1.152	-0.351	
1600	1	1.263	-0.385		1.926	-0.587	
1630	Ī	1.742	-0.531	I I	1.880	-0.573	
1700	1	2.073	-0.632		2.323	-0.708	
1730		2.241	-0.683	1	2.592	-0.790	
1800		2.234	-0.681	1 1	2.274	-0.693	
1830		2.057	-0.627		2.575	-0.785	
1900		1.716	-0.523		1.686	-0.514	
1930	ł.	1.234	-0.376		1.230	-0.375	
2000	Ţ	0.633	-0.193	1 1	0.728	-0.222	
2030	FLOOD	0.046	0.014	FLOOD	0.663	0.202	
2100							
				1	<u></u>		

TABLE 3. COMPUTED TIDAL VELOCITIES IN CAROLINA BEACH INLET CHANNELS.

	1		· · · · · · · · · · · · · · · · · · ·			
77102	ļ		AIWW (NO	DRTH) DM	150 (STATIC	N/RANGE 2
(HRS.)	FLON	VELOCITY	NODE 1	FIOW	VRIOCITY	NODE 2
	COND.	v	v		VELOCITI	NODE Z
		(Ft./Sec)	(M/Sec.)	COND.	(Ft./Sec.)	(M/Sec.)
0800	EBB	0.614	0.187	EBB	0.650	0.198
0830		1.188	0.362		1.499	0.457
0900		1.729	0.527		1.736	0.529
0930		2.201	0.671		2.484	0.757
1000		2.582	0.787		2.789	0.850
1030		2.848	0.868	[3.031	0.924
1100		2.982	0.909		3.287	1.002
1130		2.979	0.908		3.127	0.953
1200		2.835	0.864		3.071	0.936
1230		2.562	0.781		2.943	0.897
1300		2.175	0.663	P	2.182	0.665
1330		1.696	0.517	t l	1.709	0.521
1400	1	1.152	0.351		1,526	0.465
1430	EBB	0.577	0.176	EBB	0.325	0.099
1500	FLOOD	0.003	0.001	FLOOD	0.499	-0.152
1530		0.538	-0.164		0.558	-0.170
1600	I I	1.010	-0.308	i T	1,168	-0.356
1630		1.391	-0.424		1.726	-0.526
1700		1.657	-0.505		2.129	-0.649
1730		1.791	-0.546	i	2.096	-0.639
1800		1.788	-0.545		1.739	-0.530
1830		1.647	~0.502	1	2.021	-0.616
1900		1.375	-0.419		1.322	-0.403
1930	}	0.988	-0.301	1	0.997	-0.304
2000		0.509	-0.155	1	0.610	-0.186
2030	FLOOD	0.036	0.011	FLOOD	0.531	0.162
				· · · · · · · · · · · · · · · · · · ·		

TABLE 3. COMPUTED TIDAL VELOCITIES IN CAROLINA BEACH INLET CHANNELS (CONT.)

TIME	INLET GORGE (STATION/RANGE 3)						
(HRS.)	FLOW	VELOCITY NODE 1		FLOW	VELOCITY NODE 2		
	COND.	(Ft./Šec.)	(M/Sec.)	COND.	(Ft. /Sec.)	(M/Še	
0800	BB B	1.014	0.309	EBB	1.033	0.31	
0830		2.310	0.704		2.385	0.72	
0900	1	2.677	0.816		2.759	0.84	
0930		3.829	1.161		4.134	1.26	
1000	1	4.203	1.281		4.488	1.36	
1030		4.524	1.379		4.780	1.45	
1100		4.875	1.486		5.095	1.55	
1130		4.596	1.401		4.731	1,44	
1200		4.344	1.324		4.501	1.37	
1230		3.996	1.218		4.131	1.25	
1300		3.192	0.973		3.235	0.98	
1330		2.438	0.743		2.470	0.75	
1400	l T	1.654	0.504	Υ Y	1.647	0.50	
1430	EBB	0.545	0.166	EBB	0.433	-0.13	
150 0	FLOOD	0.256	-0.078	FLOOD	0.404	-0.12	
1530		1.056	-0.322	ık.	1.204	-0.36	
1600		1.962	-0.598		2.162	-0.65	
1630		2.343	-0.714		2.530	-0.77	
1700		2.946	-0.898		3.156	-0.96	
1730		3.173	-0.967		3.425	-1.04	
1800		2.729	-0.832		2.736	-0.83	
1830		3.159	-0.963		3.192	-0.97	
1900		2.090	-0.637		2.165	-0.66	
1930		1.539	-0.469	1	1.637	-0.49	
2000	Ţ	0.932	-0.284	۲ ۲	0.971	-0.29	
2030	FLOOD	0.820	0.250	FLOOD	1.115	0.34	

TABLE 3. COMPUTED TIDAL VELOCITIES IN CAROLINA BEACH INLET CHANNELS (CONT.)